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Abstract. It is argued that the scaling transformation which is currently being used to 
obtain numerical estimates of critical exponents cannot safely be employed without prior 
knowledge that the points in question are second-order transition points. The transforma- 
tion when defined on finite or semi-infinite systems will not distinguish between order- 
disorder critical points and any other point on the coexistence surface. This in turn means 
that the full phase diagram of the equilibrium surface can be found using the scaling 
transformation. The three-state Potts model is used to illustrate this. 

Introduction 

It has been demonstrated by several workers (Nightingale 1976,1977, Sneddon 1978, 
Nightingale and Blote 1980, Blote et a1 1981, Roomany er a1 1980, Wood and 
Goldfinch 1980, and Goldfinch and Wood 1982) that the scaling transformation of 
Kadanoff (Kadanoff et a1 1967) can be adapted to yield very accurate numerical 
estimates of any critical point parameter. Nightingale showed how the relative ‘thick- 
ness’ of semi-infinite systems could be intepreted as the rescaling factor; the calcula- 
tions are very modest in scale and remain so even in quite complicated interaction 
spaces where even the lowest order calculations give surprisingly good results. In the 
calculations of Wood and Goldfinch (1980) and Goldfinch and Wood (1982) the 
method was applied to some two-dimensional models of lattice gases including the 
square well and hard square models. In each case the accuracy with which the 
correlation length exponent v was obtained probably could not have been matched 
by any other method, and the results appear to show that both these models have 
Ising-like second-order transitions. 

The purpose of the present paper is to show that this technique can be greatly 
extended into a method of obtaining the whole phase equilibrium surface. The applica- 
tions of the method to date have mainly been restricted to second-order transitions, 
critical points, and exponents, although the scaling transformation has also been 
applied at known first-order transitions in the 2D zero-field Potts model by Blote et 
a1 (1981), and Roomany and Wyld (1981). The claim of the present authors is that 
the method generally does not select only the critical points in the phase diagram, 
but all the points on the coexistence surface as well. Strictly the method cannot be 
safely applied to a critical point without prior knowledge that the point in question 
is a second-order transition since these points will only appear as end points or 
boundary surfaces to regions where first-order transitions can occur. An example of 
this is to be found in a recent publication by Roomany and Wyld (1981). These 
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authors have used a finite lattice method in a Hamiltonian formalism to study the 
zero field q-state Potts model in (1 + 1) dimensions, where a rescaling of the mass gap 
of the Hamiltonian is used to identify a phase transition and is very similar to the 
rescaling of the coherence length used in the present scaling transformation. Roomany 
and Wyld reported no sign of a first-orkr transition for q 2 5 even though they 
obtained fixed points for all values of q which they examined; these they seem to 
have taken as false predictions of a second-order transition. The present work would 
imply that the results obtained by these authors are both correct and to be expected. 
Their finite system method should give positive results for both types of transition 
and fail to distinguish between them. 

In 5 2 we explain why in our view the scaling transformation should yield a 
convergent sequence of surfaces to the full phase equilibrium diagram. The ferromag- 
netic and antiferromagnetic models of the 2D Ising model are used to provide a simple 
illustration of this effect. In 8 3 this claim is subjected to a more stringent test with 
an application to the 2D three-state Potts model in a field, which has been conjectured 
to have a fairly complicated phase equilibrium structure (for a review see Wu (1982)). 
We have found that all features of the coexistence surface are clearly evidenced even 
in a low order of the scaling transformation. Finally, aspects of the phase equilibrium 
surface are compared between the three-, four- and five-state Potts models. 

2. Coexistence and long-range order 

Consider a lattice model of N sites labelled i, which can assume any one of k states 
indexed by ui, and let the actual values taken by ui be cy1, c y 2 , .  . . , ( Y k .  Thus 

is the number of sites of species p in any configuration of the system, and (n , ) /N = 
(Sur,ap) is the mean fractional number of sites of species p .  Thus in the Ising model 
cy1 = 1, and c y 2  = -1, and the magnetisation is given by 

m(T,  h 1 = ( n d  - ( n d ,  ( 2 )  

where h is the ordering field of species 1 (and - h  the ordering field of species 2) by 
which we mean that h > O  favours the occupancy of sites by species 1, giving rise to 
a l-rich phase in which (Su,,J > 4. 

In a statistical mechanical treatment of the occupancies (SuI,up) it is necessary to 
specify the preparation of the sample, both with respect to the ordering fields present 
(hi, 1 = 1, 2 ,  , , . , k) and the growth of the sample in the limit N + CO. The preparation 
with respect to the fields hl clearly has a laboratory equivalent, but the thermodynamic 
limit does not. Thus in the Ising model case 

m(T ,  h ) =  lim lim [(8v,,l)-(&,,-d]=0 
N - x  h-0 

(3) 

at all temperatures, and 

where m * are the coexisting zero-field magnetisations. The second preparation has 
been done inside the l-rich (+) or 2-rich (-) region of the phase diagram and since 
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*h acts to suppress one or other phase in the growth N + 03, the sample has been 
forced into assuming just one of its two equilibrium states when an approach to a 
point on the coexistence surface C is made in this way. In (3) the sample has been 
prepared at a point on I: and allowed to grow while being maintained at this point 
(T  < T,, h = 0 ) ;  neither the l-rich or 2-rich phase has at any stage been suppressed 
in the growth N + 03. In effect the sample has been prepared inside the two-phase 
region akin to a liquid in equilibrium with its vapour. Whereas in the laboratory we 
can force the assembly to adopt a mixed state in which the density lies between the 
coexisting vapour and liquid densities, we cannot do this theoretically since the 
statistical mechanics will assign equal proportions to each phase giving a density which 
is the average of the two coexisting states (= $ in the Ising model). 

Similar considerations apply to assemblies with three or more species, differences 
between preparations ‘on’ or ‘on an approach to’ C can be made to appear in the 
thermodynamic limit. Thus with three species (see § 3) and ordering fields hl ,  h Z ,  and 
h3 the phase diagram will have j-rich regions, and somewhere in the space (T,  h )  
we would expect to see a coexistence surface between pairs of species. If the assembly 
is prepared a t  a point on Z bordering say the i-rich and j-rich regions, then (assuming 
no asymmetry in the preference for either species) 

at coexistence, thus anywhere on that part of Z marking coexisting phases i and j we 
would, theoretically, expect to see the result 

If, however, the i-rich ordering field acts simultaneously to suppress the j phase then 
approaching E from within the i-rich region 

On an approach to the boundary of C via the disordered phase (i.e. a critical point) 
two or more phases are nearly stable, thus droplets of each phase can grow into sizes 
where their free energy density -kT. In the statistical mechanics these configurations 
are the dominant terms in the total free energy, the so-called coherence length 6 is 
envisaged to be the mean size of such droplets measured over all configurations. At 
the critical point, each phase can grow indefinitely and in the thermodynamic limit 6 
becomes infinitely large. This divergence is often referred to as infinitely divergent 
flctuations in the neighbourhood of a critical point, and is sometimes used to distinguish 
a second-order transition from a first-order transition, which is not associated with 
long-range fluctuations. The reason for this is again in the preparation; if the prepar- 
ation follows (7) then only the large i-rich droplets can survive in the large-system 
limit (see Domb 1976) as Z is approached and long-range fluctuations in Su, ,az ,  and 
Sui,ai cannot be sustained. If, however, the preparation follows (6) then droplets of 
competing phases could grow equally and long-range fluctuations are possible. Thus 
so long as we remain on I: and none of the competing species have been suppressed, 
then statistical mechanically, 6 should diverge. Hence everywhere on I: the coherence 
length is divergent in this sense, and in relation to scaling theory, when assemblies 
are allowed to grow on their E-surfaces the coherence length should be invariant to 
a rescaling of length in the thermodynamic limit. This means that the basic equation 
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which is used in the current applications of the scaling transformation (Nightingale 
1976) 

5’ = e/& (8) 
where all lengths in the prime system have been rescaled by a factor of L, should act 
as an approximation to the whole Z-surface and not just the critical points. 

The length 5 is commonly measured in terms of the characteristic decay length in 
the correlation of fluctuations, thus in terms of fluctuations (Kadanoff et a1 1967) in 
the population distribution T,,,(R) 

l-,,f(R) = ((&aJO) - ( & 7 , a p ) ) ( ~ u , a p . ( ~ )  - ( ~ , . a p . ) ) )  (9) 
and is a measure of population fluctuations in species p and p ’  at distances R apart. 
If the regions which support a coherent fluctuation become infinitely large then 

The characteristic decay length of the correlations is not thought to be dependent 
upon p and p ’  and is defined as 

5 - ’ =  - lim ( I /R)  ln\r,,,(R)I (11) 
R-m 

and our claim is that e-’ = 0 everywhere on Z if the system is prepared in the manner 
of (6). 

For classical lattice models, all of these correlation functions can be formulated 
in terms of the spectral properties of a real symmetric transfer matrix T (see Fisher 
and Burford 1967, Wood 1975 and Thompson 1972). In present applications of the 
scaling transformation we are concerned with m x w  sections of the square lattice, 
where T can be defined in general terms with elements 

(12) Taas = exp[ -P(U(a) /2+  U(a’) /2  + W ( a ,  a’ ) ) ]  

where a and a’  index the configurations of neighbouring m-site columns, W(a,  a ‘ )  is 
the interaction energy between neighbouring columns, and U ( a )  and U ( a ‘ )  are the 

Figure 1. Plots of cp,(K, 0) obtained from the Onsager solution of m X CC sections of the 
square lattice for m = 2 , 3 , 4 ,  and 9, 19,29. The intersections on the K axis are the scaling 
transformation approximations to the critical ponint (K ,  = 0.440687). 
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Figure 2. (a), (b), and (c ) ;  the contours 
of qm(K, h) ,  m = 2,3,  and 4 respectively 
for the square lattice king model. The 
broken line is the coexistence surface L 
obtained in the limit m + 00 which termin- 
ates at the king model critical point. 

( d ) ,  and (e) are similar contours for 
the king model antiferromagnet showing 
the zero contour approximants to the 
order-disorder transition line in the h, T 
plane. (See Muller-Hartman and Zittartz 
1977, and Wood and Goldfinch 1980). 
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9 
3-rich 

Figure 3. The form of the phase equilibrium diagram of the three-state Potts model as 
conjectured by Straley and Fisher (1973). The three coexistence planes hi = hi define the 
coexisting states between the rich phases, and the three web extensions mark off coexistence 
between the rich and disordered phases. 

1 . 5  I I ' ' I ! , I , ,  ' , . , ,  

-0 5 -0.3 -0.1 0 0.1 0.3 0.5 
h lJ 

Figure 4. The contours of q2(K ,  h )  for the three-state Potts model Hamiltonian ( 1 Q  the 
contours are those relating to one of the planes hi = hi in figure 3. Here and in figure 5 the 
planar coexistence sheets are evidenced by the large plateau-like region in the domain h < 0. 
All the contours are cusped on the h = 0 line and the thumb-like loop of the zero contour 
inside h > 0 suggests the presence of the web-like extensions of figure 3. Points A and B are 
the exact zero-field transition points of the three- and two-state Potts models respectively, 
and the broken curve is a schematic representation of the limiting boundary line of X. 



Phase equilibria and the scaling transformation 3585 

single column energies. For such sections of the square lattice the N + 00 limit above 
corresponds to m + 03; for m finite and R measured along a row we obtain 

where A. is the maximum eigenvalue, and A l > A 2 > .  . . are the other eigenvalues of 
T with corresponding eigenvectors pi. T is strictly non-degnerate at Ao, hence (10) 
requires the asymptotic degeneracy of T in the limit m +OD, and this must be quite 
generally the case at all points on 2. The only completely known case of this effect 
is seen in the king model solution of Onsager (1944) where A 0  is asymptotically 
degenerate on the coexistence line T s  T,, h = O .  Kac (1968) has argued that 
asymptotic degeneracy is a general mathematical mechanism for phase transitions and 
represents the appearance of two stable phases. Thus the scaling equation (8) could 
be alternatively viewed as an attempt to approximate a condition for degeneracy using 
finite systems in, say, the form 

over a surface in ( T , h )  space. In relation to the scaling transformation, (14) is in 
effect an mth approximant to the whole of the phase equilibrium surface. If we define 

K 

hlJ 

Figure 5. The contours of cp3(K, h )  for the three-state Potts model. The zero-field contour 
has shifted closer to the limiting form of the boundary line of P (shown schematically by the 
broken curve) and the extent of the  web-like extensions has diminished, see figures 9 and 10. 
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a sequence of functions cpm in the form 

q m ( T ,  h )  = mti' - (m + 1)tml+i (15) 
then the zero contour cpm = 0 will approximate Z, and the sequence of such contours 
should converge to Z. 

We can test this in relation to the Ising model where previous applications have 
only looked at the sequence of points cp,(T,, 0) = 0 (the critical point). Examples of 
the functions cpm(K, O)(K = PJ) are illustrated in figure 1, where the limiting line is 
shown schematically (broken line). To see how the phase diagram is approximated 
in the T, h plane, contour maps of cpz, c p 3 ,  and cp4 are shown in figure 2. Here we can 
see that the critical point is not distinguished except as a probable end-point of the 
Z line along h = 0. By contrast, the corresponding zero contours for the Ising model 
antiferromagnet? (see Muller-Hartmann and Zittartz 1977 and Goldfinch and Wood 
1982) are also shown in figure 2, here the boundary of Z is a line of order-disorder 
critical points and encloses a region which appears as a continuous sheet of coexistence 

Figure 6. Contours of q 2 ( h l ,  h z )  for the Hamiltonian of the three-state Potts model (19). 
The contours are taken in planes perpendicular to the temperature axis of figure 3,  here the 
temperature has been fixed well below the transition point To, and the three coexistence 
sheets appear clearly as three lines originating form the origin. 

t For the antiferromagnet, only even values of m can be used, and 

CP,(T, h )  = m G 1  -(m +2)5~:2. 

In figures 2 ( d )  and ( e )  m is 2 and 4 respectively (Sneddon 1979). 
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points (similar sheets appear in the Potts model below). In the antiferromagnetic 
there are strictly two low-temperature phases which can coexist in a finite field, these 
are the domains in terms of the sequence ‘up down up down. .  .’ being broken into 
the sequence ‘down up down up .  . .’. 

3. Phase equilibrium in the three-state Potts model 

To test the claims being made here for the scaling transformation we have applied it 
to the 2D three-state Potts model on the square lattice. The model Hamiltonian is 

where hr is the ordering field of species 1, and nn denotes nearest neighbour interactions. 
Following Straley and Fisher (1973) we impose the symmetry constraint 

hi +hz+h3  = 0 (17) 
and consider the case where two of the three fields are equal, hence with (17) 

h, lJ 

Figure 7. The contours as in figure 6 corresponding to a temperature close to the transition 
point To. 
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The outline form of the phase diagram for this model was originally conjectured 
by Straley and Fisher (1973) to be in the form shown in figure 3 (for a review see 
Wu (1982)). The three regions hi = h i  are the one-, two-, and three-rich phases in the 
domain hk > 0 ;  the negative field domains h k  < 0 are where we expect to find coexisting 
states. These are the three plane surfaces shown in figure 3, which are bounded by 
a line of critical points (shown dotted). The boundary lines should, in the limit h + -a, 
approach the critical point of the two-state Potts model in zero field (the Ising model). 
The original conjecture that the plane surfaces were extended and connected by three 
web-like surfaces w l ,  w 2 ,  and w 3  is now thought to be true only in three dimensions. 
This view follows from the exact results obtained by Baxter (1973) in which the three- 
and four-state Potts models both have a second-order transition in zero field. Thus 
it is natural to think that the three boundary lines to the plane coexistence sheets 
meet at a point To on the zero-field line. In this context the point To is an anomalous 
tricritical point. 

In figures 4 and 5 we show the contours of Qk(K, h )  for k = 2 and 3 using the 
Hamiltonian (18) which confines the phase diagram to the h2 = h3 = -h/2 line (say). 
It appears to these authors quite remarkable that the large coexistence sheet in the 
domain h CO should be so sharply evidenced as a large plateau on the contour map 

YJ 

h,lJ 

Figure 8. Contours as in figure 6 corresponding to a temperature between the two points 
marked A and B of figures 4 and 5 .  The hyperbolic enclosures of the origin in figures 6 and 
7 have divided into three narrow loops on the zero contour. These clearly represent the 
sliced-off sections of the planar coexistence sheets above the temperatures t l ,  tz ,  and t j  of 
figure 3 but below the limit points of the boundaries at h + --CO. 
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enclosed by the zero contour (Pk = 0. The small thumb-like loop just inside the domain 
h > O  appears to represent the cross-section of the web w 1  along the hl  axis, and the 
point To is clearly evidenced by a cusp on E. Points which are marked on the figures 
are the exact location of To (KO = l n ( l + J 3 )  = 1.00505 . . . , Potts (1952), Baxter 
(1973)) and the critical point of the two-state Potts model which should be the limit 
points of the zero contours. We conjecture that the sequence of surfaces qk = 0 will 
converge rapidly to a good representation of the true coexistence surface (shown 
broken) in which the thumb-like loop has converged to the single point To. 

We have also looked at this model in terms of two independent fields, for which 
the Hamiltonian can be put into the form 

where by fixing K we can use the scaling transformation to view the intersection of 
the phase diagram in figure 3 with planes perpendicular to the temperature axis. Our 
results using q2 are shown in figures 6 ,  7, and 8 where the contours of ql(hlr h2)  are 
shown for temperatures below To, just above To, and just below the zero-field critical 
point of the two-state Potts model. Again the results seem to be quite remarkable 
for such a simple calculation. Figure 6 clearly shows the three coexistence planes 
hi = hi. In figure 8 we obtain exactly what is to be expected, namely three sections of 
the coexistence planes ‘sliced’ off before their common intersection at h = 0. In figure 

4.5 -0 3 -0.1 0 01 0.3 05 
hlJ 

Figure 9. The contours of (p2(K, h )  for the four-state Potts model, these contours corres- 
pond to those shown in figure 4 for the three-state Potts model. 
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7 the three disjoint zero contours of figure 8 have joined to form the three hyperbolic- 
like enclosures of the origin. This of course is consistent with the presence of the 
web-like extensions, but the resolution here is not sufficient to be certain of such a 
structure. 

The generalisation of the Hamiltonian (18) to the q-state Potts model is 

and we have used the scaling transformation to examine the phase equilibrium structure 
of the four- and five-state Potts models corresponding to the region shown in figures 
4 and 5 .  The general q-state model in such a field has recently been looked at by 
Goldschmidt (1981) using high-q series expansions. Goldschmidt found that for h > 0 
(and q > 4 (Baxter 1973)) in two dimensions there was evidence for a line of first-order 
transitions which terminated at a critical point in the h, T plane. This line appears 
to grow in length with increasing q. This of course is the cross-section of the web-like 
region as represented by the thumb loops above. The corresponding contours for the 
four- and five-state models are shown in figures 9 and 10. The thumb loops are 
are clearly present. 

K 

--, -- 
,I--'% \ , *  

0 5+-- 
-0 5 -0 3 03 0 5  -01  0 01 

h l J  

Figure 10. The contour cp2(K, h )  of the five-state Potts model corresponding to those shown 
in figure 4 for the three-state model. Here as in the four-state model the planar and web-like 
structure of the X surface is clearly represented. The webs appear to be growing in size with 
q (see Goldschmidt 1981). 
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4. Summary and conclusions 

We have argued that the scaling transformation (Nightingale 1976, Sneddon 1978, 
Wood and Goldfinch 1980) cannot be used to form estimates of critical parameters 
at critical points without prior knowledge that the point is a second-order transition 
point. The method does not distinguish order-disorder points from any other point 
on the coexistence or phase equilibrium surface. In effect the method is far more 
powerful than was originally envisaged, and is capable of providing a very good 
approximation to the whole phase equilibrium diagram. These claims have been 
illustrated by an application to the full phase equilibrium diagram of the three-state 
Potts model. ’ 
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